Type: \(\displaystyle 3A^{1}_1\) (Dynkin type computed to be: \(\displaystyle 3A^{1}_1\))
Simple basis: 3 vectors: (2, 2, 1), (0, 2, 1), (0, 0, 1)
Simple basis epsilon form:
Simple basis epsilon form with respect to k:
Number of outer autos with trivial action on orthogonal complement and extending to autos of ambient algebra: 0
Number of outer autos with trivial action on orthogonal complement: 0.
C(k_{ss})_{ss}: 0
simple basis centralizer: 0 vectors:
Number of k-submodules of g: 6
Module decomposition, fundamental coords over k: \(\displaystyle V_{2\omega_{3}}+V_{\omega_{2}+\omega_{3}}+V_{\omega_{1}+\omega_{3}}+V_{2\omega_{2}}+V_{\omega_{1}+\omega_{2}}+V_{2\omega_{1}}\)
g/k k-submodules
idsizeb\cap k-lowest weightb\cap k-highest weightModule basisWeights epsilon coords
Module 13(0, 0, -1)(0, 0, 1)g_{3}
h_{3}
g_{-3}
2\varepsilon_{3}
0
-2\varepsilon_{3}
Module 24(0, -1, -1)(0, 1, 1)g_{5}
g_{-2}
g_{2}
g_{-5}
\varepsilon_{2}+\varepsilon_{3}
-\varepsilon_{2}+\varepsilon_{3}
\varepsilon_{2}-\varepsilon_{3}
-\varepsilon_{2}-\varepsilon_{3}
Module 34(-1, -1, -1)(1, 1, 1)g_{6}
g_{-4}
g_{4}
g_{-6}
\varepsilon_{1}+\varepsilon_{3}
-\varepsilon_{1}+\varepsilon_{3}
\varepsilon_{1}-\varepsilon_{3}
-\varepsilon_{1}-\varepsilon_{3}
Module 43(0, -2, -1)(0, 2, 1)g_{7}
h_{3}+2h_{2}
g_{-7}
2\varepsilon_{2}
0
-2\varepsilon_{2}
Module 54(-1, -2, -1)(1, 2, 1)g_{8}
g_{-1}
g_{1}
g_{-8}
\varepsilon_{1}+\varepsilon_{2}
-\varepsilon_{1}+\varepsilon_{2}
\varepsilon_{1}-\varepsilon_{2}
-\varepsilon_{1}-\varepsilon_{2}
Module 63(-2, -2, -1)(2, 2, 1)g_{9}
h_{3}+2h_{2}+2h_{1}
g_{-9}
2\varepsilon_{1}
0
-2\varepsilon_{1}

Information about the subalgebra generation algorithm.
Heirs rejected due to having symmetric Cartan type outside of list dictated by parabolic heirs: 6
Heirs rejected due to not being maximally dominant: 0
Heirs rejected due to not being maximal with respect to small Dynkin diagram automorphism that extends to ambient automorphism: 0
Heirs rejected due to having ambient Lie algebra decomposition iso to an already found subalgebra: 0
Parabolically induced by 2A^{1}_1
Potential Dynkin type extensions: